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Überprüfung der Standardpraxis im Feld und eine erneute Hervorhe-
bung der Bedeutung von Böden und Sedimenten als archäologische 
Materialien. Dieser Überblick stellt ausgehend von der Expertise un-
terschiedlicher Fachleute die modernsten Ansätze der Boden- und 
Sedimentanalyse vor. Vom großen bis zum kleinen Maßstab kön-
nen bahnbrechende Methoden etablierte Bodenanalyseverfahren 
ergänzen, um Fragen der Bodenbildung und Erosionsprozesse, der 
Bewahrung des kulturellen Erbes, der Mobilität, der Domestizie-
rung, der Landnutzung, der Wechselwirkungen zwischen Mensch 
und Umwelt, der kulturellen und biologischen Komplexität und der 
Hinterlassenschaften von Ökosystemen zu behandeln. Aufgrund 
von Bodenanalysen können neue Fragen gestellt und innovative Hy-
pothesen in einem interdisziplinären Forschungsrahmen entwickelt 
werden.

Schlüsselbegriffe
Sedimente, Mikromorphologie, Boden-Biomarker, Paläoproteomik, 
sedimentäre aDNA, Bodenlandschaften

1. Introduction
Soils and sediments are inconstant, changing components 
of the Earth’s surface that play a fundamental role in re-
constructing palaeoenvironments and archaeological land-
scapes.1 Soils and sediments are also an archive of past cultural 
and non-cultural events, from volcanic eruptions to domes-
tication and early agriculture, storing the microremains of 

1 Bede et al. 2015. – Crombé, Verhegge 2015. – Kluiving et al. 
2016.

Abstract
Sediments serve as an archive of human and animal activity and en-
vironmental conditions through their physical and chemical prop-
erties as well as captured biological traces. Archaeologists have been 
extracting information from archaeological soils and sediments for 
decades, but recent technological developments, such as the analysis 
of lipid biomarkers, proteins, and ancient DNA from soil and the di-
versification of approaches necessitate a re-examination of standard 
field practice and a renewed emphasis on soil and sediments as ar-
chaeological materials. This review paper brings together a range of 
specialists to introduce cutting-edge approaches to analysing soils and 
sediments. From the large to the small scale, pioneering methods can 
complement established soil analytical methods to address issues of 
soil formation and erosion processes, heritage preservation, mobility, 
domestication, land use, human-environmental interactions, cultural 
and biological complexity, and ecosystem legacies. Soil analyses are 
poised to enable archaeologists to ask new questions and generate in-
novative hypotheses in an interdisciplinary research framework.
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Zusammenfassung – Die optimale Nutzung des Erkenntnis- 
potentials von Böden in der Archäologie: Ein Überblick

Sedimente dienen aufgrund ihrer physikalischen und chemischen 
Eigenschaften sowie der in ihnen enthaltenen biologischen Spuren 
als Archiv menschlicher Aktivitäten und Umweltbedingungen. Seit 
Jahrzehnten extrahieren Archäolog*innen Informationen aus Böden 
und Sedimenten, aber die jüngsten technologischen Entwicklungen 
wie die Analyse von Lipid-Biomarkern, Proteinen und alter DNA 
im Boden, sowie die Diversifizierung dieser Ansätze, erfordern eine 

Archaeologia Austriaca, Band 106/2022, 319–334
© 2022 by Österreichische Akademie der Wissenschaften, Wien
doi: 10.1553/archaeologia106s319

Making the Most of Soils in Archaeology.  
A Review

Roderick B. Salisbury
Ian D. Bull
Susanna Cereda
Erich Draganits
Katharina Dulias
Kerstin Kowarik
Matthias Meyer
Elena I. Zavala
Katharina Rebay-Salisbury



320 Roderick B. Salisbury et al.

settlement and production activities,2 traces of pollution,3 
evidence of ecological changes, and the environmental im-
pact of cultural behaviour.4

Despite the relevance of these traces, systematic appli-
cations of geochemistry and geo-biochemistry of soils and 
sediments are still underused in archaeology. This is all the 
more regrettable in light of the rapidly expanding toolbox of 
conjoined methods from geo, bio, and eco sciences, which 
allow us to target new high-potential proxies such as lip-
id biomarkers,5 ancient human and environmental DNA 
(aDNA),6 and ancient proteins.7 Full exploitation of the soil 
archive remains sporadic. Keith W. Kintigh and colleagues8 
set out 25 grand challenges for archaeology to address the 
fundamental nature of human societies, of which the emer-
gence of complexity, resilience, mobility, and human-envi-
ronment interactions are just a few examples. Organic and 
inorganic microtraces in sediments, and microstructure of 
deposits, can contribute data to each of these challenges.

Soils and sediments are steadily evolving materials with 
very heterogeneous ages, origins, and formations. Soils form 
in place on some parent material, which can include sedi-
ments, and are spatially immobile. Pedogenesis (soil forma-
tion) occurs through the combined influences of climate, to-
pography, and biological and geochemical processes on the 
parent material over time. A well-developed soil profile will 
have a distinct sequence of soil horizons. In contrast, layer-
ing in sediments is related to depositional events. Sediments 
are mineral particles formed by weathering of rocks and 
then transported by water, wind, ice, gravitation, people, or 
animals. Some sediment clasts can travel thousands of kilo-
metres by air, while others experience shorter transport by 
river, lake, or seawater; some originate from local sources, 
transported by a variety of processes including local surface 
runoff or human activity, and some components may have 
formed autochthonously.9 Accordingly, different soils and 
sediments can have very different properties, inherited from 
the different source regions. Some sediment grains could be 
many millions of years old, possibly (re-)eroded and (re-)
deposited in several cycles, while others, formed during soil 

2 Migliavacca et al. 2013. – Pecci, Barba, Ortiz 2017. – Salis-
bury 2017.
3 Martínez Cortizas et al. 2016. – Lentz et al. 2020. 
4 Karkanas et al. 2011. – Schumacher, Schier, Schütt 2016.
5 Bull, Betancourt, Evershed 2001. – Kovaleva, Kovalev 
2015. – Zocatelli et al. 2017.
6 Slon et al. 2017. –  Crump et al. 2021.
7 Oonk, Cappellini, Collins 2012.
8 Kintigh et al. 2014. 
9 Pope 2013.

formation or by calcium precipitation or other geochemical 
processes, are very young.

This variability becomes even more relevant when 
considering soil/sediment mixing by bioturbation (e.g. ro-
dents, earthworms, roots), cryoturbation, and along des-
iccation cracks. Earthworms and the roots of many plants 
can reach several metres in depth, disturbing deeper levels 
of soils and palaeosols and moving particles up or down. In 
addition to ‘natural’ processes, the anthropogenic effects 
on erosion, sedimentation, and pedogenesis, such as for-
est clearance, animal husbandry, water management, and 
agricultural practices, often act much faster and with more 
energy than non-cultural processes.10 The geogenic, bio-
genic, and anthropogenic processes that act on sediments 
can be synchronous with deposition (syn-depositional) or 
post-depositional. Soils and sediments can be influenced 
by various amounts of syn- to post-depositional erosion, 
generating sediment deposition elsewhere as colluvium 
or increased sediment load in waterways. During depo-
sitional and post-depositional phases, variations in many 
large-scale and small-scale factors, including relief, cli-
mate, hydrology, mineral inputs, vegetation, and fauna can 
influence soils and sediments. In addition, soil formation 
(pedogenesis) frequently occurs as a post-depositional 
process on cultural deposits. Due to the nature of evolu-
tion and alteration, sediments/soils form discontinuous, 
patchy layers, highly variable in horizontal and vertical 
extent.11 

To get the most out of soils and sediments, therefore, 
requires a solid understanding of formation processes and 
depositional environments, as well as the analytical tech-
niques available in the second decade of the 21st century. In 
this article, we have three objectives: i) to advocate a concep-
tual reframing of soils and sediments as archaeological ma-
terials, ii) to review cutting-edge approaches to soil analysis, 
including recommendations for sampling and storage (see 
Tab. 1), and iii) to make suggestions for a re-examination 
of standard field practices and integration with established 
soil analytical methods to move towards a fully integrated 
bio-geoarchaeology framework, thus making the most out 
of archaeological soils and sediments.

2. Sedimentology
Sediments serve as archives from which to extract pol-
len, phytoliths, diatoms, black carbon, datable organics, 

10 Zalasiewicz et al. 2019.
11 Pope 2013.
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biomolecules, and other environmental proxies.12 There-
fore, a thorough understanding of landscape formation pro-
cesses, providing context for these archives, should be an 
integral part of any bio-geoarchaeological approach, in ad-
dition to being fundamental to reconstructions of land use 
and palaeoenvironments. Classical sedimentological analy-
sis, based on coring campaigns and examination of exposed 
profiles,13 represents one of the most powerful approaches 
to understanding formation processes that play out on the 
landscape level as well as mapping the complex entangle-
ment of cultural and non-cultural drivers of these processes. 

This analysis provides information about geomorphol-
ogy, erosion/accumulation history, hydrological activity, 
and topographic changes.14 Data is generally collected from 
exposed profiles, cores or drillings, including vibracores, 
hydraulic percussion drills, and Russian corers, among oth-
ers. When using plastic or polycarbonate tubes within the 
corer, the resultant cores can be stored and subsampled for 
many of the other methods presented in this paper. Analys-
ing the sediment grains themselves aids in determining the 
differences between sedimentation and erosion, deposition-
al alterations such as (de)calcification or bioturbation and 
argillipedoturbation, and the identification of palaeosurfac-
es and phases of landscape stability or activity in the form 
of buried topsoils or redeposited soil sediments. Analyses 
include one or more of sediment colour, grain size, miner-
alogical composition, magnetic susceptibility, soil organic 
carbon, soil nitrogen, pH, and carbonates, as well as chem-
ical enrichment.15 Sediment particle size is typically mea-
sured using a laser granulometer or nested sieves. Soil or-
ganic matter and carbonate content are quantified through 
total carbon analyses.16

The application of these methods to reconstructing pa-
laeolandscapes and human settlements, as well as the effects 
of both cultural and non-cultural processes on the archaeo-
logical record, is exemplified in the following studies. Studies 
of coastal plains in southern and central Italy, for example, 
demonstrated that sedimentation in these plains biases our 
understanding of archaeological settlement patterns; at the 
same time, sedimentation serves as a proxy for determining 
the relative sustainability of ancient agriculture on coastal 
plains.17 In the coastal karst setting of the ancient Roman city 

12 E.g. Gerlach, Eckmeir 2012. – Nicoll, Murphy 2014. – Vry-
daghs, Ball, Devos 2016. – Jansen et al. 2019. 
13 Rick et al. 2022.
14 Leopold, Völkel 2007. – Dreslerová et al. 2019. 
15 Bede et al. 2015. – Draganits et al. 2019.
16 E.g. Nejman et al. 2018.
17 Attema 2017.

of Apsorus (modern Osor) in the Adriatic Sea, airborne laser 
scanning (ALS) and airborne laser bathymetric (ALB) data 
combined with lithostratigraphic documentation, radiocar-
bon dating, and X-ray diffraction (XRD) of karst sinkhole 
sediments from vibracores allowed for the reconstruction of 
the palaeocoastline and the early onset of erosion.18 Inves-
tigations of the fluvial hinterland of the ancient salt mine at 
Chehrābād, located at an altitude of c. 1450 m in the north-
western Iranian Plateau, used high-resolution digital eleva-
tion models, geotechnical rotary drilling, sedimentological 
analyses, and radiocarbon dating to document the long-term 
effect of centuries of irrigation on the fluvial landscape.19 
In another example, from the Ecse-halom burial mound in 
eastern Hungary, particle size, magnetic susceptibility, soil 
organic and carbonate content, and thin-section microscopy 
indicated that layers originated from the immediate vicinity 
of the mound, but have different characteristics than pres-
ent-day soils. Results also suggest continuous salinization 
of the Hortobágy marshlands throughout the Holocene.20 
In the Seille Valley in eastern France, an integrated approach 
relying largely on borehole surveys, sedimentological analy-
sis, geochronology, and palynology revealed the fundamen-
tal impact of prehistoric salt production on the hydrological 
regime and subsequently on landscape formation.21 The scale 
of landscape alteration was such that these early industrial 
activities still influence land use and hydrology today. 

3. Sediment Thin-section Microscopy
Micromorphology is the study of undisturbed, oriented, 
and resin-impregnated soil/sediment samples, ground to 
a thickness of 30 µm and observed under a petrographic 
microscope, which is a transmitted light microscope with 
a polarizing filter.22 The identification and description of 
the soil/sediment components – their nature, geometry, and 
spatial arrangement – facilitates the recognition of distinct 
depositional environments and agents, thus providing a de-
tailed understanding of the genesis of investigated contexts.

Since the 1970s and 1980s, micromorphological stud-
ies have been growing within archaeology.23 Investigated 
topics include the reconstruction of past environments and 
land management strategies, the integrity and preservation 
of archaeological sequences, spatial differentiations at the 

18 Draganits et al. 2019.
19 Draganits 2020.
20 Bede et al. 2015.
21 Riddiford et al. 2016.
22 Courty, Goldberg, Macphail 1989. – Macphail, Goldberg 
2017.
23 Stoops 2014.
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intra-settlement and intra-building scales, experimental and 
ethno-geoarchaeological studies aimed at defining path-
ways of deposition and degradation of specific materials as 
well as their distinctive features in thin section (e.g. mud-
bricks, dung, combustion features), the use of resources, 
and the study of ancient technologies.24

Other research focuses on the presence/absence of ma-
terial residues from daily-life activities and how people 
dealt with these materials (e.g. by discarding, recycling, or 
incorporating them into the built environment). Examples 
of such investigations include middens, pits, ditches, con-
structed and informal floors, streets, open spaces, and pen-
ning areas.25

The main contribution of these studies lies in the re-
construction of the complex relationship between people, 
animals, and their physical surroundings, in turn offering 
insights into past living conditions, health as well as social-
ly and culturally-driven perceptions of wellbeing and pro-
priety. Also, in combination with other lines of evidence 
(e.g. organic chemistry, parasitology, mycology), the mi-
crostratigraphic study of waste, rubbish, and cleaning prac-
tices has the potential of addressing past health challenges, 
thus stimulating new interdisciplinary avenues for archae-
ological research.

By providing crucial microcontextual, microstrati-
graphical information, micromorphology is particularly 
well suited for multi-proxy research. For this reason, sam-
pling strategies must preserve the structural integrity and 
orientation of the sediment blocks. Once in the laborato-
ry, samples can be temporarily stored either at room tem-
perature – in dry and ventilated places – or cold conditions 
(i.e. refrigerated), depending on the moisture and organic 
content. However, since weathering and mechanical distur-
bances eventually affect unconsolidated samples, at present 
the best way to ensure their long-term preservation is by 
consolidating them with resin. 

The process of impregnating a block with resin is ir-
reversible, and microsampling of loose sediment for fur-
ther tests (e.g. gas chromatography-mass spectrometry 
(GC-MS), x-ray diffraction (XRD), 14C) should be carried 
out before the impregnation. Other measurements (e.g. 
micro-computed tomography (µCT), micro-x-ray fluo-
rescence spectroscopy (µXRF), micro-Fourier transform 
infrared spectroscopy (µFTIR), µRaman spectroscopy, 

24 See Macphail, Goldberg 2017, and references therein.
25 See, recently, Macphail et al. 2017. – Koromila et al. 2018. – 
Furlan, Bonetto, Nicosia 2019. – Borderie et al. 2020. – Brön-
nimann et al. 2020. – Lisá et al. 2020. – Portillo, García-Suárez, 
Matthews 2020. – Shillito, Mackay 2020.

etc.) can be carried out directly on the thin sections (with 
no coverslip) or by drilling the blocks.26 However, one 
recent study suggests that GC-MS and GC-isotope ra-
tio mass spectrometry (GC-IRMS) can be performed on 
dust drilled from impregnated slabs.27 Another recent 
paper suggests that aDNA can be successfully extracted 
from impregnated blocks, directly linking genetic infor-
mation with archaeological and ecological records on a 
microstratigraphic scale.28

4. Multi-element Chemistry
Anthropogenic processes, combined with the chemical and 
physical properties of soils, allow for the accumulation of 
chemical residues as indicators of past human activities. 
Many different soil characteristics and chemical analyses 
can be used to examine anthropogenic markers in the sed-
iment archive, including phosphates, trace elements, plant 
nutrients, soil organic carbon, and biomarkers. Established 
methods of inorganic chemistry, including soil phosphate 
analyses and multi-element inductively coupled plasma 
mass spectroscopy or optical emission spectroscopy (ICP-
MS or OES), along with recent developments in portable, 
handheld x-ray fluorescence (pXRF), provide information 
on site boundaries, activity areas, spatial organization, and 
land use.29 Colorimetry tests are useful for soil phosphates, 
albeit providing qualitative results.30 

The established process for inorganic multi-element soil 
chemistry involves the chemical digestion of a soil sample 
using acid, followed by measurement of the elements us-
ing ICP-MS or ICP-OES. Which acids are best suited for 
this has been subject to extensive debate,31 with quasi-total 
extraction and sequential extractions emerging as the most 
reliable and replicable methods.32 Handheld pXRF is now 
being widely used for soil analyses, returning total elemen-
tal composition comparable to total and quasi-total chemi-
cal extractions.33 

Soil chemistry has contributed to understanding the 
uses and organization of space. Plazas at Mesoamerican set-
tlements most likely served as multi-purpose areas, hosting 

26 Nicosia, Stoops 2017. – Karkanas et al. 2019.
27 Rodríguez de Vera et al. 2020.
28 Massilani et al. 2022.
29 Holliday, Gartner 2007. – Wilson, Davidson, Cresser 2008. 
– Salisbury 2016. – Šmejda et al. 2018.
30 Holliday, Gartner 2007.
31 Middleton, Price 1996. – Wells 2004. – Vyncke et al. 2011.
32 Wilson, Cresser, Davidson 2006. – Wilson, Davidson, Cress-
er 2008.
33 Lubos, Dreibrodt, Bahr 2016. – Horák et al. 2018. – Šmejda et 
al. 2018. – Dreslerová et al. 2020.
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markets, rituals, and feasts, based on the results of phos-
phate colorimetry, ICP-OES, and pXRF.34 Soil chemistry 
conducted using pXRF at Tel Burna in the southern Levant 
identified several activity areas, including copper working.35 
Soil phosphates have been included in several attempts to 
locate prehistoric garden plots and agricultural fields.36

Future research combining established multi-element 
methods with soil biomarkers and micromorphology will 
strengthen the interpretational power of soil chemistry. 
Lipids and multi-element chemistry have been used togeth-
er, for example, to identify activity areas in a Danish Iron 
Age longhouse.37 Subsamples for trace element and lipid 
analysis can be taken from block samples prior to resin im-
pregnation. The continued development of these methods, 
and potentially lower costs, should contribute to increased 
visibility of geochemical applications.

5. C/N Isotopes
Carbon (C) and nitrogen (N) are important elements, espe-
cially in terms of depletion or enrichment due to agricultural 
and pastoral activities and the ability to link these to isotope 
values in human and animal bone and cereal grains.38 Tradi-
tional methods for soil carbon have employed wet or dry 
combustion methods to determine total carbon by measur-
ing captured CO2,

39 or to determine organic carbon through 
titration or loss on ignition using a muffle furnace and digital 
scales;40 thermogravimetric analysers automated the process 
with computerized analysis and outputs. Current analytical 
techniques for percent total organic C and percent total N 
use combustion and elemental analysers, often linked to iso-
tope-ratio mass spectrometers for δ13C and δ15N.41 

Results of studies on specifically archaeological soils 
indicate that anthropogenic activities result in increased 
C and N values.42 For example, indications of C and δ15N 
enrichment were recovered in relict topsoils found in ex-
cavated pit infillings.43 In East Africa, before c. 1200 BP, 
changes in δ15N most likely due to decreased precipitation 
were found in conjunction with changes in δ13C associated 
with changes in the quantity of C4 relative to C3 plants.44 

34 Coronel et al. 2015.
35 Šmejda et al. 2018.
36 Roos, Nolan 2012.
37 Hjulström, Isaksson 2009.
38 E.g. Kanstrup et al. 2014. – Dreslerová et al. 2021.
39 Nelson, Sommers 1982.
40 Dean 1974.
41 Beach et al. 2011. – Lauer et al. 2014. – Dreslerová et al. 2021.
42 Beach et al. 2011. – Lauer et al. 2014. – Sandor et al. 2022.
43 Lauer et al. 2014.
44 Terwilliger et al. 2011.

Analysis of C and N isotopes from buried relict topsoil 
layers would significantly improve our interpretations of 
ancient ecosystems, manured agricultural plots, and hu-
man-environmental interactions. Soil and sediment ar-
chives provide archaeological material for analysis in the 
absence of preserved seeds and grains. Moreover, 14C dat-
ing of the soil organic carbon, in conjunction with δ13C 
analysis, increases the confidence that chronologies and 
interpretations are complementary.45 

6. Soil Biomarkers
Approaches using lipid biomarkers to derive information 
about the history of a soil are particularly useful since infor-
mation may be obtained in the absence of any morpholog-
ical evidence. The specificity of particular biomarkers for 
different faecal sources makes them a valuable resource for 
environmental monitoring as well as archaeology.46 A defin-
ing characteristic of biomarkers is the retention and stability 
of structural traits indicating the biogenic source, despite 
diagenesis,47 although pedological conditions influence bio-
marker preservation.48

Methods for lipid analyses vary depending on the type 
of compound(s) being targeted. Pre-analysis preparation of 
samples typically involves several extraction and clean-up 
steps. In general, the process involves extraction into a sol-
vent system of medium polarity such as dichloromethane 
(DCM)/methanol (2:1 v/v) to acquire a total lipid extract 
(TLE). Subsequently, the TLE is chromatographically sep-
arated into polarity-based fractions containing the target 
compounds, which are then derivatized with additional re-
agents (to ensure gas chromatographic amenability), and an-
alysed by some form of chromatographic instrumentation, 
most commonly GC-MS.49 

Faecal biomarkers (5β stanols and, to a lesser extent, bile 
acids), have proved to be reliable and environmentally re-
calcitrant indicators of cultural activity and therefore have 
been widely deployed in the archaeological sciences.50 In ad-
dition to manuring studies,51 geochemical biomarkers have 
aided in reconstructing palaeoenvironmental conditions 

45 van der Plicht, Streurman, van Mourik 2019.
46 Walker et al. 1982. – Dinel, Schnitzer, Mehuys 1990. – 
Bethell, Goad, Evershed 1994.
47 Peters, Moldowan 1993.
48 Bull et al. 2000. – Killops, Killops 2005.
49 Elhmmali, Roberts, Evershed 1997. – Bull et al. 1999. – Ger-
lach et al. 2012.
50 Evershed et al. 1997. – D’Anjou et al. 2012. – White et al. 2018.
51 Bull et al. 1999. – Simpson et al. 1999.
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and other human activities.52 Faecal biomarkers provide 
data on pastoral practices and land use in France,53 animal 
husbandry and uses of dung in Anatolia,54 and plants as a 
significant component of Neanderthal diet in Spain.55 They 
have long been used to make basic distinctions between dif-
ferent animal groups and/or species such as humans, rumi-
nants, and pigs; this approach has recently been extended 
and refined to increase the range of animal species (e.g. rein-
deer, lemming, goat, sheep, horse, moose, dog, pig, goose, 
donkey), significantly increasing its usefulness for research 
on early domestication and animal husbandry.56

Other lipids are also being used as proxies for a range of 
activities in various archaeological contexts at multiple an-
alytical scales. For example, combined archaeological and 
experimental data revealed that fatty acids recovered from 
ancient hearths most likely derive from the burning of large 
animal bones.57 Similar to faecal biomarkers, n-alkanes and 
plant sterols from leaf waxes can exhibit chemical signatures 
specific to different plant types and can survive in sediments 
for thousands of years or more.58 They can be used to recon-
struct plant communities and species changes, such as from 
lacustrine to terrestrial or from forest to grassland.59 Carbon 
and hydrogen stable isotopes comprising these compounds 
can be used to infer palaeoclimate variability60 and resultant 
expansion and contraction of forests.61 In another application, 
n-alkanes indicated significant Neolithic biomass burning.62 

7. Ancient DNA from Sediments
The analysis of ancient sediment DNA (sedaDNA) from 
terrestrial, marine, and lake sediments has become an in-
creasingly powerful tool for understanding past ecosystems, 
biodiversity, and evolutionary history as it enables the ex-
amination of DNA from many different taxa (flora, fauna, 
and microorganisms) from each sample and can be applied 
across large temporal ranges.63 This has been demonstrated 
through various studies, including, for example, the dat-

52 Hjulström, Isaksson 2009. – Shillito et al. 2011. – Prost et al. 
2017.
53 Zocatelli et al. 2017.
54 Portillo, García-Suárez, Matthews 2020.
55 Sistiaga et al. 2014.
56 Prost et al. 2017. – Harrault et al. 2019.
57 Kedrowski et al. 2009.
58 Patalano, Zech, Roberts 2020.
59 Schwark, Zink, Lechterbeck 2002. – Zech et al. 2010. – Schatz 
et al. 2011.
60 Schirrmacher et al. 2019. – Patalano, Zech, Roberts 2020.
61 Wurster et al. 2010.
62 Eckmeier, Wiesenberg 2009.
63 Giguet-Covex et al. 2014. – Parducci et al. 2017.

ing of the appearance of a viable ice-free corridor between 
Beringia and North America64 and tracking changes in the 
arctic ecosystem during the last interglacial.65

The basic processing of sedaDNA involves three steps: (1) 
DNA extraction; (2) data generation through (i) metabarcod-
ing (sequencing of amplicons targeted for taxa of interest), (ii) 
shotgun sequencing (direct sequencing of DNA libraries), or 
(iii) enrichment of DNA libraries for specific genomic targets 
by hybridization capture; and (3) data analysis (data authen-
tication and taxa identification).66 Methodological studies in 
sedaDNA have increased our understanding of how DNA is 
bound to various sediment components,67 but there are still 
open questions surrounding sedaDNA taphonomy. Cur-
rent known temporal limits are similar to skeletal remains at 
over 300,000 years in cool environments.68 Studies have also 
found minimal evidence of DNA leaching, but large impacts 
of bioturbation.69 It is therefore critical to work closely with 
micromorphologists, chronologists, and geologists to eval-
uate stratigraphic integrity. Detailed studies on the impacts 
of sampling locations and flow rates on lake sedaDNA em-
phasize that large sample sets are needed to accurately under-
stand past environments.70 

Recently, sedaDNA has been integrated with archaeo-
logical data to study patterns of human occupation.71 This 
was taken a step further when it was demonstrated that 
hominin DNA could not only be recovered from Pleisto-
cene sediments,72 but also be used to reconstruct population 
histories and directly compare them to changes in climate 
and faunal diversity.73 Moreover, aDNA has been success-
fully extracted from impregnated block samples and uncov-
ered thin section slides, expanding the range of potential 
sampling strategies.74 SedaDNA studies will continue to 
provide new insights on past eco-diversity and how it was 
shaped by changes in climate. 

8. Palaeoproteomics from Sediments
Much like lipids and DNA, proteins are important bio-
markers that should become fundamental to archaeolog-
ical research. An increasing body of evidence and models 

64 Pedersen et al. 2016.
65 Crump et al. 2021.
66 Edwards 2020.
67 Giguet-Covex et al. 2019. – Kanbar et al. 2020.
68 Rawlence et al. 2014. – Slon et al. 2017.
69 Edwards 2020.
70 Edwards 2020. – Vernot et al. 2021.
71 Bálint et al. 2018.
72 Slon et al. 2017.
73 Vernot et al. 2021. – Zavala et al. 2021.
74 Massilani et al. 2022.
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demonstrates that proteins can be recovered from ancient 
contexts and geographic regions with generally poor pres-
ervation of ancient biomolecules.75 Soils are an abundant 
archaeological artefact and may function as a sink for mol-
ecules such as proteins, which hold specific information 
about their origin, enabling the detection of human occu-
pation and activities.76 This information yield is often lim-
ited by contamination and degradation. Proteins have been 
presumed to be especially prone to microbial degradation, 
as they have a high nutrition value for soil organisms.77 
However, just as DNA molecules can successfully survive 
degradation by absorption onto mineral matrices and ad-
sorption on clays and to humic substances in the soils,78 so 
can proteins.79 Moreover, studies have shown that amino 
acids are more stable than nucleic acids in many environ-
ments.80 Nevertheless, although the potential of proteins 
as archaeological biomarkers is widely appreciated and al-
ready used for a variety of different archaeological materi-
als,81 the applicability of soil proteomics to archaeological 
soil material is still in its infancy and has a great need for 
testing and development. A first exploratory study done in 
2012 investigated the effects of different soil components 
on the fraction of proteins in soils, the isolation efficiency 
of different reagents, and how the detection and identifi-
cation of proteins in soils are affected by protein retention, 
isolation reagents, and co-isolated soil particles.82 Since 
then (as far as the authors are aware), no substantial prog-
ress has been made in the utilization of ancient proteins 
from archaeological soils. Recently, soil proteomics analy-
sis has been applied to investigate the soil textile imprints 
of a tomb at the Dahekou Cemetery site in China.83 More 
work is necessary to fully develop the methodology and 
exploit the great potential of this biomarker in archaeolog-
ical soils and sediments. 

9. Sampling and Storage Recommendations
Collecting and storing sediments for multi-element chemis-
try, phosphates, magnetic susceptibility, and total carbon are 
relatively straightforward and easily done by archaeologists 

75 Cappellini et al. 2018.
76 Oonk, Cappellini, Collins 2012.
77 Cappellini et al. 2018.
78 Nielsen, Calamai, Pietramellara 2006. – Levy-Booth et al. 
2007.
79 Quiquampoix et al. 1993. – Zang et al. 2000. – Nielsen, Cala-
mai, Pietramellara 2006.
80 Buckley 2019.
81 Hendy et al. 2018.
82 Oonk, Cappellini, Collins 2012.
83 Li, Zhu, Xie 2021.

in most field settings. Samples should be air-dried or freeze-
dried as soon as possible to limit organic activity, such as 
the continued action of tiny insects and microorganisms or 
germination of seeds. These samples can be stored indefi-
nitely at cool temperatures. The greatest concern is rapid or 
extreme changes in temperature or humidity. 

These older methods of sampling for inorganic soil 
chemistry are inadequate for current capabilities involv-
ing biomolecules. One immediate methodological aim in 
archaeological soil chemistry, and geoarchaeology more 
broadly, should be to establish new and standardized sam-
pling and storage methods focused on the preservation of 
biomolecules, in particular those collected directly from 
archaeological contexts. For sediment cores collected in 
sealed tubes, this is not as problematic. In most other cases, 
geoarchaeologists should be able to take in situ measure-
ments before sampling, for example using pXRF or mag-
netic susceptibility.84

Sampling schemes should be developed with archaeolo-
gists and geochronologists to discuss research questions and 
ensure as far as possible the stratigraphic integrity of the ma-
terial. With the right sampling approach, soil samples can be 
taken for both aDNA and protein analysis together. Samples 
for inorganic chemistry can later be subsampled and freeze-
dried to expedite analysis, or parallel sampling should be 
undertaken. In caves and other terrestrial archaeological 
sites, samples should be taken from exposed archaeological 
profiles in a grid-like pattern (approximately every 10 cm 
or adapted to the specific situations and research questions) 
if possible, or in multiple columns of block samples, to fa-
cilitate microstratigraphic analysis of sample locations. In-
cluding samples from above and below each layer of interest 
is critical for understanding the context of the results. To 
limit the number of samples tested, a preliminary screening 
may be completed of 1–2 samples per layer of interest to de-
termine the success of DNA and/or protein preservation at 
the site. Sampling is also possible from drill cores, following 
similar considerations. 

While sampling, minimization of modern contamination 
is essential. We encourage the use of plastic (non-latex) gloves, 
facemasks, and hair coverings when sampling, with frequent 
glove changes (ideally between samples, at minimum when 
they are visibly dirty). Furthermore, no wool, silk, rubber, or 
leather should be worn, and skin and hair should be covered 
at all times when sampling and handling samples, as protein 
and DNA from these sources could potentially contaminate 
the samples. If lipid analyses are to be conducted, then the 

84 Kainz 2016. – Šmejda et al. 2018.
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introduction of any extraneous chemical compounds, e.g., 
plasticizers and other additives from plastic implements or 
containers, should be avoided. Storage in furnaced glassware 
or, as a minimum, uncontaminated aluminium foil is recom-
mended. Clean surfaces and equipment are essential. Metal 
or plastic tools are best washed with bleach solution or 70 % 
ethanol, and baked glassware should be used. Generally, all 
measures taken to reduce contamination from sampling/ex-
cavation, through storage and laboratory analysis should al-
ways be reported and described in publications. A thorough 
guide to handling palaeoproteomic samples in the lab, includ-
ing a detailed explanation of why the use of non-latex gloves 
is necessary, is given in Jessica Hendy and colleagues.85 When 
sampling vertical profiles, start with the bottommost sample 
in a column and remove the surface of the material with a 
sterile scalpel or spatula. Then sample about 0.5–5 grams of 
sediment into a sterile plastic tube or bag. Fresh tubes and 
scalpels should be used for each sample collected. 

Vacuum freeze-drying should be considered the standard 
for the storage of small sediment samples because it has the 
advantage of preserving the sample’s chemical and biological 
structures. The method was used for soil biomarker analyses 
in the Faroe Islands.86 Another study revealed that vacuum 
freeze-drying minimized errors in mercury (Hg) fraction 
analysis, yielding Hg values close to those from fresh sam-
ples, as compared to air-drying and oven-drying.87 Currently, 
vacuum freeze-drying is being investigated as a possible alter-
native for long-term storage of sediment cores, although the 
project is in a preliminary stage and the feasibility of this pres-
ervation strategy still needs to be fully evaluated.88 Research 
is needed to assess the effect of the vacuum on stratigraphic 
integrity in cores. The impacts of different storage conditions 
on the survival of aDNA and proteins are not fully studied, 
but we recommend storing sediments in cool environments, 
ideally a refrigerator, or frozen if they were collected in per-
mafrost. Lake sediment samples and any samples with highly 
organic layers should be stored at 4°C, ideally in a cold room, 
as soon as possible after sampling on site. Soil samples for 
aDNA or protein analysis should ideally be stored in a freez-
er at -80°C to avoid bacterial growth until processing. Freeze-
thaw cycles should be avoided. The potential of impregnated 
micromorphological blocks as repositories of trace element 
and biomolecular data89 will be resolved through additional 
testing but looks promising.

85 Hendy et al. 2018.
86 Curtin et al. 2021.
87 Liu et al. 2019.
88 Enevold et al. 2019.
89 Rodriguez de Vera et al. 2020. – Massilani et al. 2022.

10. Summary: Analysis for the Future 
Landscapes, soils, and sediments have for too long been 
solely treated as the backdrop of human existence, rather 
than as elements that can capture a wide range of traces of 
behaviours and cultural practices. Soil deposits store incred-
ible amounts of information generated by both cultural and 
non-cultural processes. Information stored in the sediment 
archive includes the macro- and microstratigraphy, chem-
ical signatures, isotopes and biomarkers, aDNA, and pro-
teins. Bio-geoarchaeological work of the last decades has 
shown that new methods acquire data that was previously 
unavailable, and address new questions that were previous-
ly barely imaginable. 

To get the most out of soil means incorporating micro- 
scale methods into a discipline for which the destruction 
of soil archives – excavation – is the primary approach. In 
practice, it is difficult to store vast quantities of soil from 
excavations without a clear goal and strategy, and it is also 
not necessary. Here, we present an outline of current meth-
ods and research questions they can address, with the goal 
of inspiring archaeologists to integrate smart soil sampling 
and storage in their research design. An interdisciplinary, 
integrative approach with the joint elaboration of questions 
and selection of the best methods is essential for making real 
progress. Methods are constantly being developed and in 
flux, and it remains a challenge to integrate the widest pos-
sible range of approaches and methods from increasingly 
smaller samples, by finding ways to produce several strands 
of evidence from single samples by applying different meth-
ods in optimal sequence and curating samples appropriate-
ly. Advances in extracting trace element and biomolecular 
data from thin-section blocks offer hope for consolidated 
sampling and storage in the future. However, we must em-
phasize that sedimentary palaeoproteomics, particularly 
extraction from terrestrial archaeological contexts, is un-
derdeveloped in comparison with other methods.

Soils and sediments are the records that hold information 
about the lives of humans, animals, plants, and microbes, as 
well as their dynamic relationships with each other and the 
geosphere. It is time to make the most out of soils for archae-
ology, and the most of the archaeological record by flipping 
our methodological paradigm. Instead of discarding soils 
and sediments to get to objects of interest, sediments must 
become the objects of interest, analysed through the pleth-
ora of new technologies. 
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